Panos Alexopoulos
Panagiotis Alexopoulos
In today’s data-driven world, the ability to extract meaningful insights from interconnected information is critical. Over the past decade, knowledge graphs have emerged as the foundational framework for managing complex networks of data, helping organizations connect entities and concepts to unlock deeper insights. For data modelers, BI analysts, and data scientists, knowledge graphs provide a structured approach to semantic data integration and enable better decision-making through connected data.
At the same time, Large Language Models (LLMs) like OpenAI’s GPT have revolutionized natural language processing and AI-powered analytics. These models excel in understanding and generating human-like text, automating tasks such as language translation, text summarization, and even semantic search. As such, for data scientists and analysts, LLMs can be a powerful tool for advanced analytics, enabling better insights through their deep understanding of context and language.
When combined, knowledge graphs and LLMs can create a synergistic effect that improves the way data is modeled, analyzed, and utilized. This course will show you how to leverage knowledge graphs to enhance the accuracy, reliability, and explainability of LLM outputs, while also showing how LLMs can improve the schema design, knowledge acquisition, and quality control aspects of knowledge graphs.
This 2-day course is designed to equip data professionals with the knowledge and practical skills needed to integrate Knowledge Graphs and Large Language Models (LLMs) into their data modeling and analytics workflows. Combining theory with hands-on practice, students will learn every essential step for launching and managing a knowledge graph development project, with practical guidance on leveraging LLMs effectively at each stage. They will also learn how to combine knowledge graphs within LLM-based applications to enhance the latter’s performance and reliability.
Technologies and Tools
In this course, we will explore a range of cutting-edge technologies and tools essential for working with knowledge graphs and large language models. For knowledge graphs, we will focus on industry-standard frameworks such as RDF/OWL and querying with SPARQL, alongside practical tools like Protege for ontology development and GraphDB for graph storage and querying. Participants will also gain hands-on experience with Neo4j and Cypher. On the LLM side, we’ll be leveraging OpenAI’s GPT models, exploring how they can enhance the accuracy and usability of knowledge graphs. Finally, we will introduce Langchain, a robust framework designed to simplify the integration of language models with external data sources, making it easier to orchestrate complex workflows and automate processes.
Learning Objectives
Who is it for?
Van der Valk Hotel Utrecht
Winthontlaan 4-6
3526 KV Utrecht
Telefoon 030 8000 800
Van der Valk Hotel Utrecht is gelegen langs de A12 afslag 17 (Utrecht / Jaarbeurs / Kanaleneiland). U kunt parkeren in de parkeergarage van het hotel en ontvangt van ons na afloop een uitrijkaart. Ook met openbaar vervoer is het hotel zeer goed te bereiken. Vanaf Centraal Station Utrecht vertrekt er tijdens de spits iedere 7 minuten een bus (buslijn 63, 65, 66, 74 en 77) of sneltram (lijn 20 en 21) en arriveert u binnen 10 minuten bij het hotel. Voor vertrekpunten en -tijden van treinen en bussen kunt u kijken op www.9292.nl of bellen met 0900-9292.
Alhoewel het hotel beschikt over een ruime parkeergarage kunnen wij geen plaatsen garanderen. Wij adviseren daarom om met openbaar vervoer te reizen.
Van der Valk Hotel Utrecht biedt mogelijkheden voor overnachting. Echter, het hotel geeft geen korting op verblijf aan evenementbezoekers. Indien u er wilt overnachten zult u daarom via de reguliere wijze bij Van der Valk moeten reserveren.
Meer informatie over het hotel en de locatie vindt u op www.vandervalkhotelutrecht.nl.
Wilt u deze sessie exclusief binnen uw eigen organisatie aanbieden voor een groep medewerkers? Een zeer aantrekkelijke optie met hoog rendement! Nu ook online of op locatie met deelnemers in de zaal plus online deelnemers.